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We introduce a finite element method which is piecewise continuous on the mi-
croscopic scale of the spatial resolution h but discontinuous on the mesoscopic scale
h δ , δ ∈ (0, 1). The method is designed to capture the morphology of needle twin
structures frequently found in ferric and pseudo-elastic crystals, namely, in uniaxial
ferromagnets and au milieu of the Austenite-Martensite interfaces. The approach
is based on a domain decomposition method that interpolates between the scale on
order of the size of crystal and the microscopic scale of finite element approxima-
tion h. The scale interpolation is enabled by incorporating frequency adaptivity. The
visualization and analysis of the computational results presented disclose microstruc-
tures corresponding to complex scaling laws. We document that the fine structures
obtained by the presented method are not visible using classical formulation of the
underlying variational problem and using conforming approximation of admissible
sets. The proposed method is suitable for non-smooth relaxation and optimization
when the minimizers lack the often required C1,α-regularity and when they exhibit
fractal behavior. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Our goal in this article is to develop a computational methodology for finding minimizers
of the energies representing the work needed to create internal surfaces in constrained
crystals. Our effort is motivated by the computational observations that classical tools

1 The first author was supported in part by Grant NSF DMS-0107539. The work was supported by the Los
Alamos National Laboratory Computer Science Institute (LACSI) through LANL Contract 03891-99-23, as part
of the prime Contract W-7405-ENG-36 between the Department of Energy and the Regents of the University of
California, by Grant NASA SECTP NAG5-8136, by a grant from Schlumberger Foundation, and by a grant from
the TRW Foundation. The computations in this paper were performed on a 16 processor SGI Origin 2000, which
was partly funded by NSF SCREMS Grant DMS-9872009.
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produce incorrect results in this framework. A simple mathematical model representing the
energy of an internal surface reads

min{I(u, �) | u ∈ W 1,4(�), u(x) = 0 on ∂� in the sense of traces}, (1.1)

where � = (0, L) × (0, K ), K > 0, L > 0, and2

I(u, �)
def=
∫

�

α |∂x u(x, y)|2 dx dy +
∫

�

β|(∂yu(x, y))2 − 1|2 dx dy

+
∫ L

0
ε‖∂yyu(x, .)‖(0, K ) dx . (1.2)

The functional I(u, �) has number of local minima at which the equilibrium metastable
structures differ profoundly by pattern morphology. The lower the value of the minimum in
(1.1), the more competing scales participate in the complexity of the structure of the mini-
mizer. The global scaling properties of I associated with various types of local minimizers
are studied analytically in [15–17]; the local scaling properties are derived in [6]. More re-
cently, the problem is studied in [7], with β = 1/ε, in order to derive a �-convergence result
recovering an effective energy near internal domain walls in single crystals. Minimization
of singularly perturbed non-convex functionals has a long history of intensive mathe-
matical research. We refer the interested reader to these papers for a more comprehen-
sive list of references and some historical background. Local minimizers of this class of
problems pertain to the solid–solid and fluid–fluid phase transitions, as well as minimal
surfaces.

The minimizers providing low values of the energy contained in the internal surfaces
are difficult to obtain. Most constructions of such minimizers all have in common asymp-
totic self-similarity of the construction [2, 6,17]. The structures which develop in the “far-
field” are scaled and redistributed with increasing frequencies close to the internal domain
walls. From the computational point of view, the major problems are presented by the
self-similarity leading to a fractal scaling and by the presence of the singular perturbation
term

∫ L
0 ε‖∂yyu(x, .)‖(0, K ) dx . Within the classical finite element method, a conforming

approximation would have to adhere to the W 2,∞-topology. This is computationally expen-
sive and it interferes with the local scaling properties of the approximate minimizers uh due
to their excessive smoothness. In these strong topologies, the approximation must be con-
structed using high-degree polynomials. The approximation in the weaker W 1,4-topology
leads to the interpretation of the perturbation term as a Radon measure. There does not
exist a direct, explicit way of implementing this term numerically in the weaker topology
where the functional representing the arrangement work but excluding the so-called surface
energy term is naturally defined.

The purpose of the paper is to reformulate for the computational purposes the original
minimization problem (1.1) by removing the singular perturbation term and to replace
its role by a frequency equidistribution principle in conjunction with a priori imposed
global scaling laws. Our approach can be applied in situations which are mathematically
similar such as minimization of the non-local functional in (2.5). We apply the proposed

2 The different powers of the partial derivatives put more emphasis on the distance of ∂ x u from zero if J < 1.
We could certainly choose an anisotropic space for the admissible functions. The choice of the Sobolev space
W 1,4(�) is more a choice of convenience.
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methodology to obtain computationally complex multiscale minimizers corresponding to
the equilibria of the total stored energy of domain walls in pseudo-elastic and ferro-elastic
materials which includes the sharp interface approximation of the twin boundaries. We are
not aware of any numerical or computational method providing finite element approximation
of the self-similar minimizing patterns. One of our goals is to address this gap. We also
provide analysis of the computational results studying various scaling laws including those
which are conjectured but not proven at a time in the available literature.3

The computational recovery of complex multiscale minimizers of functionals similar to
(1.2) is important. The numerics is much less dependent on a particular form of the energy
functional. This is certainly not true for analytical works. More importantly, as noted in
[3, 4], most of the analytical methods use periodic or semi-periodic structures to estimate
the effective energy. Such approach is certainly justified when the lower bound for the
energy is available and if such structures attain the scaling predicted by the lower estimates.
If this were not the case, then numerics has the potential to reveal perhaps non-periodic
minimizing structures including their local scaling properties, which are not readily available
using analytical tools. Another application of the numerical approach is to uncover a variety
of fine structures or microstructures corresponding to predicted scaling laws. This detailed
information is perhaps not important for the effective macroscopic behavior but plays a
crucial role if other effects such as heat transfer or oscillating electric field are taken into
account.

The paper is organized as follows. We describe global scaling laws and the corresponding
fine structures in Section 2. We outline the mesoscale nonconforming method in Section 3.
We present the reformulation of the minimization problem (1.1) in Section 4. The compu-
tational examples are described and various comparisons, including observed scaling laws,
are provided in Section 5.

1.1. Internal Surfaces in Crystals

Internal surfaces in crystals form domain walls in many different classes of materials.
Ferroelastic or pseudo-elastic materials represent certainly a valid example. These pattern
boundaries are typically the result of a phase transition between two phases with different
symmetries. The underlying phase transition thus often creates twin structures. Twins are
seen to form when a crystal is squeezed or subjected to an external field. Mechanical twinning
is technologically important in superconductors and industrial shape memory alloys, and
it is observed in mineralogically and petrologically relevant systems. Major mesoscale
microstructures formed by twins include junctions where twins intersect, S-shaped domain
walls, and needle twins. In order to describe the geometrical and physical properties of such
internal surfaces, the energy of the domain wall may be considered. This energy has the
form [22]

J =
∫

W (q) d� + �

∫
(es)iσi d� +

∫
σw d S. (1.3)

The first contribution in (1.3) represents the Landau potential calculated by the spatial

3 The numerical results presented confirm a local scaling properties of the multiscale minimizers conjectured
in [17]. It has been pointed out to us by an unanimous referee that these conjectures were proved correct in [6] at
about the same time that we have been investigating them computationally.
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summation of the density W corresponding to an order parameter q on a mesoscopic scale
for areas in the crystal that are close to an internal surface. The second contribution includes
the interaction between the spontaneous strain and a stress field. The last term accounts for
the surface energy.

From the mathematical point of view, a pattern morphology such as the needle twins
corresponds to very low levels of energy J. Various mesoscale microstructures are located
at different local minima of J. The numerical approach to finding these patterns by mini-
mization of the energy J is rather difficult since commonly observed patterns in ferroelastic
domains or twinned pseudo-elastic materials are formed by a competition of events occur-
ring on many different scales.

2. GLOBAL SCALING AND THE UNDERLYING FINE STRUCTURES

We consider the following two examples to illustrate how the complexity of internal
surfaces in crystals can grow as the energy decreases. In the framework of the ferric materials,
the (micromagnetic) energy (1.3) of a domain wall in an uniaxial ferromagnet given by

J(m)
def= α

∫
R2

|∇u(x)|2 dx + β

∫
�

m2(x)2 dx + ε

∫
�

|∇m(x)| dx, (2.1)

where m = (m1, m2), |m| = 1, and � u = div m in �, m = 0 in �c, and � = (−L , L) ×
(0, 1), is considered in [5]. The unknown m represents spontaneous magnetization. The
first term represents the non-local magnetic field energy, the second term yields micro-
magnetic anisotropy, and the last term represents local surface energy associated with the
presence of the Bloch walls which correspond to twins found in Martensitic materials. The
energy (2.1) is derived in [5] as the sharp interface approximation from a more standard
Landau–Lifshitz theory [18]. Investigating the local minimizers of (1.3), it is possible to
describe the formation and geometrical structure of magnetic microdomains. The avail-
able results indicate that there are two different regimes of optimization at which a local
minimum of the stored energy J(m) is attained, [5]. Namely, disregarding the anisotropy
term,

min J(m) scales as

{
α1/2ε1/2L1/2, for “one dimensional patterns”,

α1/3ε2/3L1/3, for “multi-dimensional patterns” if ε
L is small.

(2.2)

The first regime has been known for a long time [18]. It follows by simply investigating the
energy J(m), Eq. (2.1), for the divergence-free magnetization m = (±1, 0) that eliminates
the crystalline anisotropy. The micromagnetic energy then behaves as [5, 18]

J(m) ∝ αa + ε
L

a
, (2.3)

where a is the layer width, and the surface energy is proportional to ε L
a . The minimum with

respect to a in (2.3) is attained for

a =
√

εL

α
, i.e., JOPT(m) ∝ α1/2ε1/2L1/2. (2.4)
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FIG. 1. The function plotted on this figure is an example of a minimizer corresponding to the first scaling law
(2.2a). This shows the relationship between the surface energy and the elastic energy. The surface energy term
is εL/a. We have a = 1/2. The surface energy plays role of the counter of the number of laminates along the
y-direction.

Clearly, since m = 0 in �c the energy is not zero in the triangular regions close to x = −L
and x = L; cf. Fig. 1. As L increases, the excess energy contained in the triangular regions
increases. Consequently, for L large enough the first regime is not optimal. Thus, there must
exist a different pattern corresponding to a different local minimum of J(m) for the system
to be stable. We note that if ε/L < α then α1/2ε1/2L1/2 > α1/3ε2/3L1/3. The second regime
in (2.2) is thus preferable for “long” crystals.

The geometrical structures having the energy scaled as in the second regime in (2.2) are
studied in a number of works. The first studies were done in the framework of the structure
of the Austenite–Martensite Interface in [15–17], and then computationally including quasi-
statics based on a level-set approach in [10, 12, 23]. Recently, the morphology of the second
regime has been studied in the framework of micromagnetic in [5, 9], in the framework
of diblock copolymers in [4], and using an abstract apparatus of probability measures on
multiscale micropatterns in [1].

The lower bound for the energies like J(m) can be obtained using interpolation inequali-
ties [4]. Restricting the discussion to one dimension, � = (0, L), the micromagnetic energy
J(m) becomes similar to energies studied in [1, 15] and more recently in [19]. With the
change m = u̇, the energy may be considered in a less frequently used form [4, 19]

J(u)
def= α‖u‖2

H−1(0,L) +
∫ L

0
βW (u̇(x)) + ε2 |ü(x)|2 dx, (2.5)

where the density W is such that it forces u̇ to be close to ±1; e.g., W (s) = (s2 − 1)2. The
energy (2.5) corresponds to the energy introduced in (2.1), except a different norm is used in
place of the non-local term. The presence of ε2 |ü(x)|2 as opposed to ε |ü(x)| corresponds
to the Landau–Lifshitz representation of the surface energy [18]. The singular term in (2.1)
represents a sharp interface approximation of the twin boundaries. The connections between
the two models are discussed in detail in [15]. We refer to [4] for interpretation of the term
α‖u‖2

H−1(0,L) as the non-local energy.
We re-derive a lower bound for the energy having the form (2.5). Let v(s) =∑∞

k=−∞ vk

exp(2π iks) be one-periodic function with a zero mean. Then

‖v‖2
H−1(0,1) = 2π

∞∑
k=−∞,k �=0

|vk |2
k2

.
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Using the following inequality [4], with λ > 0, � integer, v ∈ W 1,2(0, L), |v| ≤ 1,

C
∫ 1

0
|v(x)|2 dx ≤ 1

�

(∫ 1

0

1

λ
W (v) + λ |v̇(x)|2 dx

)
+

∞∑
k=−∞,k �=0

min

{
1,

�2

k2

}
|vk |2 (2.6)

we can establish a lower bound for the energy J(u) in (2.5). The change of variables x = Ly,
δ > 0, yields after some manipulations [13]

J(u) = α ‖u‖2
H−1(0,L) + L

∫ L

0

β

L
W (u̇(x)) +

(
ε√
L

)2

|ü(x)|2 dx

= L2α

(
ε

L
5
2 α

)δ

Y, (2.7)

where

Y =
(

ε

L
5
2 α

)−δ

‖u‖2
H−1(0,1) +

(
ε

L
5
2 α

)1−δ ∫ 1

0

(
ε

L
5
2

)−1
β

L
W

(
1

L

d

dy
u(Ly)

)

+ ε

L
5
2

∣∣∣∣ d2

dy2
u(Ly)

∣∣∣∣
2

dy.

We assume that

1

L
W
( s

L

)
≥ (s2 − 1)2, for L > 1, and for s close to ±1.

Taking λ = ε/L
5
2 , δ = 2/3, and � = ( ε

L
5
2 α

)−1/3, we now have the possibility to apply the

inequality (2.6), with v replaced by u̇. If ε/L < α then

2π

∞∑
k=−∞,k �=0

min

{
1,

�2

k2

}
|vk |2 = �2 ‖v‖2

H−1(0,1) .

Consequently, the interpolation inequality (2.6) provides a positive constant C such that

C
∫ 1

0
|u̇(x)|2 dx ≤ Y. (2.8)

Thus (2.8) and (2.7) yield

J(u) ≥ C L2α

(
ε

L
5
2 α

)2/3 ∫ 1

0
|u̇(x)|2 dx . (2.9)

Assuming
∫ 1

0 |u̇(x)|2 dx = 1, we have

J(u) ≥ Cα1/3ε2/3L1/3. (2.10)

We refer to [4, 5] for the upper bounds which are, up to a multiplicative constant, the same
as the lower bound (2.10).

A construction of Privorotskij [20] provides a minimizer yielding the second global
scaling; see, e.g., [5, 14]. The interpolation inequalities such as (2.6), namely the lower
bounds they provide, indicate optimality of these constructions. See Fig. 2.
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FIG. 2. Microscale construction covered by a mesoscale, optically visible, needle twin structure corresponding
to the Privorotskij construction [20].

3. NONCONFORMING MESO-SCALE COMPUTATIONAL APPROACH

The standard approximation and optimization tools applied to the problem (1.1) do not
capture the multidimensional patterns discussed in Section 2. We provide computational
evidence of this deficiency by using a conforming approach to relax the functional I in
Section 5. We strive to derive an optimization approach based on the minimization of the
functional I(u, �), (1.2), but we try to avoid the explicit inclusion of the singular perturbation
(surface energy) term

∫ L
0 ε‖∂yyu(x, .)‖(0, K ) dx . This term represents the total variation of

the second derivatives of the function u. The presence of the singular perturbation term in the
definition of the function I(u, �) guarantees existence of the strong limit of any minimizing
sequence in, say, W 1,4(�). Consequently, it guarantees attainment of the minimization
problem (1.1). We note that taking into account only the first two terms in (1.2) yields a
minimization problem with non-attainable infimum for there is no mechanism imbedded
into the structure of the functional to prevent creation of unlimited oscillations in the gradient
of the minimizer.

We replace the singular term representing the surface energy by the frequency equidistri-
bution principle. This approach consists in the decomposition of the domain � into infinite
number of subdomains. We construct the minimizers in such a way that the number of dis-
continuities in their gradients is controlled by the measure of these subdomains to guarantee
a strong convergence of minimizing sequences. We prove the following result to set a stage
for the non-conforming approach.

THEOREM 3.1. Let � = (0, L) × (0, K ), L , K > 0, and let {un}n∈N ⊂ W 1,p(�), p > 2,

be a uniformly (w.r.t. n) bounded sequence. Let us denote its weak limit by u ∈ W 1,p(�). Let
us assume that un = 0 on ∂� for any n ∈ N, and let ∂yun(x, y) ∈ {±1} for a. a. x ∈ �. Then

∫ K

0

∫ L

0
|∇un(x, y) − ∇u(x, y)|2 dx dy

≤ P(n) + ‖un − u‖L∞((0,L)×(0,K ))

∫ L

0
‖∂yyun(x, .)‖(0, K ) dx, (3.1)
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where

P(n)
def= ‖∂x un − ∂x u‖2

L2(�) +
∫ K

0

∫ L

0
(∂yun(x, y) − ∂yu(x, y))∂yu(x, y) dx dy.

Let us assume that

‖∂x un − ∂x u‖L2(�) → 0 as n → ∞. (3.2)

Then, in particular, un converges to its weak limit strongly in W 1,p(�) if

lim
n→∞ ‖un − u‖L∞((0,L)×(0,K ))

∫ L

0
‖∂yyun(x, .)‖(0, K ) dx = 0, or

(3.3)

lim
n→∞

∫ L

0
‖∂yyun(x, .)‖(0, K ) dx < +∞.

Remark 3.2. Here ‖∂yyu(x, .)‖(0, K ) denotes the total variation of ∂yyu(x, .) at point
x and with the second variable in (0, K ) (Definition 5.1.1 [24]). The second derivative of
u becomes a Radon measure if ∂yu ∈ {±1}. The total variation can be identified in our
situation with the essential variation essVK

0 (∂yu) given by (Exercise 5.1 [24])

essVK
0 (∂yu) = sup

{
l∑

k=1

|∂yu(x, yk) − ∂yu(x, yk−1)|
}

, (3.4)

where the supremum is taken over all finite partitions 0 < y0 < y1 < · · · < yl < K
such that each point yi is a point of approximate continuity with respect to Lebesgue me-
asure.

Remark 3.3. We note that the second condition in (3.3) is not automatically satisfied.
As an example we can consider unidirectional laminates which will have zero x-derivative
but their y-derivative will uncontrollably oscillate between ±1. The limiting microstructure
will indeed satisfy the homogeneous boundary conditions but the number of jumps in the
y-derivative will not be bounded.

Proof (of Theorem 3.1). We have

∫ K

0

∫ L

0
|∇un(x, y) − ∇u(x, y)|2 dx dy

= P(n) +
∫ K

0

∫ L

0
(∂yun(x, y) − ∂yu(x, y))∂yun(x, y) dx dy

= P(n) +
∫ L

0

M(n)−1∑
i=1

∫ yn
i+1

yn
i

(∂yun(x, y) − ∂yu(x, y))∂yun(x, y) dx dy

= P(n) +
∫ L

0

M(n)−1∑
i=1

(un(x, y) − u(x, y))|y=yn
i+1

y=yn
i

∂yun
(
x, ψn

i

)

= P(n) +
∫ L

0

M(n)−1∑
i=1

(
un
(
x, yn

i

)− u
(
x, yn

i

))[
∂yun

(
x, yn

i

) ]
. (3.5)
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In deriving (3.5), we assume that {yn
i }M(n)

i=1 are the only points where ∂yun suffer a jump,
and ψn

i ∈ (yn
i , yn

i+1) is arbitrary. We denote by [.] the jump of the enclosed quantity. Since,
in view of the definition (3.4)

∣∣∣∣∣
∫ L

0

M(n)−1∑
i=1

(
un
(
x, yn

i

)− u
(
x, yn

i

))[
∂yun

(
x, yn

i

)]∣∣∣∣∣
≤ ‖un − u‖L∞((0,L)×(0,K ))

∫ L

0
‖∂yyun(x, .)‖(0, K ) dx (3.6)

(3.1) follows.
The strong convergence in W 1,2(�) follows from (3.1) since P(n) → 0 as n → ∞. In-

deed, the assumption (3.2), the continuous imbedding of W 1,p(�) into C0,λ(�) for p > 2
which guarantees the strong convergence of the L∞ norm, and from the assumed weak con-
vergence of the sequence, we conclude that P(n) → 0 in view of either of the assumptions
(3.6).

Remark 3.4. (i) We do not assume that ∂x un → 0 since the differential inclusion ∇u ∈
{(0, ±1)} subject to the pointwise Dirichlet boundary condition u = 0 on ∂� does not
have a solution. On the other hand the inclusion ∇u ∈ {(±ε, ±1)}, ε > 0, is solvable. This
is because the homogeneous Dirichlet condition has its gradient contained in {±ε, ±1} ∪
Int Co{±ε, ±1} (Theorem 1.4 [8]). Here, Int Co denotes the interior of the convex hull of
the set {±ε, ±1}.

3.1. Implementation in a Finite Dimensional Setting

In a finite dimensional setting, we split the domain (0, L) × (0, K ) into subdomains
(0, Li ) × (0, K ), Li+1 < Li , i = 1, 2, . . . , M(h) − 1. We have for uh ∈ V (i)

h

sup
x∈(Li+1,Li )

‖∂yyuh(x, .)‖(0, K ) ≤ 1√
2

dim V (i)
h (3.7)

where

V (i)
h = {vh ∈ C0(�i )|vh |Qh ∈ Q1}, (3.8)

Qh ∈ τ
(i)
h is (for simplicity) a uniform partitioning of the subdomain �i , i.e., �i = (Li −

Li+1) × (0, K ) = ⋃h Qh and Q1 = Span{1, x, y, xy}. Thus

‖∇uh(x, y) − ∇u(x, y)‖2
L2((0,L)×(0,K ))

≤ P(h) + ‖uh − u‖L∞((0,L)×(0,K ))

M(h)−1∑
i=1

(Li − Li+1) dim
(
V (i)

h

)
. (3.9)

Hence, we can guarantee the strong convergence of the approximating sequence uh in at least
W 1,2 ((0, L) × (0, K )), and by interpolating inequalities in W 1,∞ if an uniform L∞-bound
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for gradients is available, by requiring

uh ⇀ u weakly in W 1,p ((0, L) × (0, K )), p ≥ 3,

P(h) → 0 as h → +0, (3.10)

lim
M(h)→+∞

M(h)−1∑
i=1

(Li − Li+1) dim V (i)
h < +∞.

3.2. Dimension of V(i)
h

We seek a sequence of functions u(i)
h ∈ V (i)

h , i = 1, 2, . . . , M(h). Now we determine an
appropriate dimension of the space V (i)

h . It follows from the theory developed in [16] that
there exists a constant C , independent of u, ε, and L , such that a multiscale minimizer obeys
the inequality ∫ L

0
‖∂yyu(x, .)‖(0, 1) dx ≤ Cε−1/3L1/3. (3.11)

We assume that the same inequality is true on the mesoscopic scale Li − Li+1. Consequently,
we require

dim V (i)
h ≤ ε−1/3(Li − Li+1)

−2/3 (3.12)

to obtain the mesoscopic scaling

∫ Li

Li+1

‖∂yyu(x, .)‖(0, 1) dx ≤ dim V (i)
h (Li − Li+1) ≤ ε−1/3(Li − Li+1)

1/3 . (3.13)

Thus we have for u(i)
h ∈ V (i)

h∫ L

0

∥∥∂yyu(i)
h (x, .)

∥∥(0, K ) dx =
M(h)∑
i=1

∫ Li

Li+1

∥∥∂yyu(i)(x, .)
∥∥ (0, K ) dx

≤ ε−1/3
M(h)∑
i=1

(Li − Li+1)
1/3

= ε−1/3L1/3
M(h)∑
i=1

(
Li − Li+1

L

)1/3

(3.14)

We impose the following summability condition to comply with (3.10c):

lim
M(h)→+∞

M(h)∑
i=1

(
Li − Li+1

L

)1/3

< +∞. (3.15)

We note that (3.15) and (3.12) yield (3.10c).

4. FORMULATION OF THE OPTIMIZATION PROBLEM

We consider the minimization of the functional (4.1) separately on each subdomain �i .
Consequently, we replace the minimization problem (1.1) with the following optimization
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FIG. 3. A cross-sectional view of a typical behavior of the minimizers of (1.2) as they approach the boundary
at x = 0. Since ∇u = (0, ±1)T the function cannot meet the homogeneous boundary condition. This forces the
function to oscillate faster and faster, simulated by amplitudes 1–3 on the picture, as it approaches the domain
wall simulated by the “hard” boundary condition u = 0.

problem. Let us denote for simplicity the first two terms in (1.2) by J(u, �), i.e.,

J(u, �)
def=
∫

�

α |∂x u(x, y)|2 dx dy +
∫

�

β|(∂yu(x, y))2 − 1|2 dx dy. (4.1)

Problem 4.1. Let � = (0, L) × (0, K ), L > 0, K ≥ 1, and α > 0, β > 0, γ > 0, ε > 0
be given. Let the subdomains �i = (Li+1, Li ) × (0, K ) such that Li+1 < Li , for any i =
1, 2, . . . , M − 1, L M = 0, and � = ∪M

i=1�i be given. Let us denote �i+1
def= ∂�i+1 ∩ ∂�i .

Let us assume that the partition points Li satisfy the condition (3.15). We seek a vector
{u(i)}M

i=1, u(i) ∈ W 1,4(�i ), by solving

min
u(i)∈W 1,4(�i )
i=1,2,...,M

M∑
i=1

J
(
u(i), �i

)+ γ

M−1∑
i=1

∫
�i

∫
�i

∣∣w(i+1,i)(x) − w(i+1,i)(y)
∣∣2 dx dy,

where w(i+1,i) = u(i+1) − u(i), γ > 0,

subject to
∫ Li+1

Li

∥∥∂yyu(i)(x, .)
∥∥ (0, K ) dx ≤ Cε−1/3 (Li − Li+1)

1/3 K ,

u(M)(x, y) = 0, on ∂�M\{x = L M−1}, (4.2)

u(i)(x, y) = 0, on ∂�i\{{x = Li } ∪ {x = Li−1}} ,

∇u(1)(x, y)n = 0, on {x = L1},
for any i = 1, 2, . . . , M(h) − 1.

Remark 4.2. We do not require the continuity of the minimizers across the interfaces
�i , hence the attribute nonconforming.
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FIG. 4. The first plot, top-left, shows superposition of two function: function f which has derivatives
+1 in [0, 1/2) and −1 in (1/2, 1] and the function g which has derivatives also ±1, oscillating in the
intervals (0, 0.4), (0.4, 0.45), (0.45, 0.5), (0.5, 0.55), (0.55, 0.6), (0.6, 1.0). Its “coupling energy,” mea-

sured by the term
√∫

�i

∫
�i

|w(i+1,i)
h (x) − w

(i+1,i)
h (y)|2 dx dy, is 0.047. The picture on the top-right shows

( f (x) − g(x) − ( f (y) − g(y)))
2 close to the center of the square (0, 1)2. The lower two pictures show the similar

computations but for different functions f and g. The “coupling energy” of the lower case is 0.067.

The minimization in (4.2) allows the minimizers u(i) to differ by a constant across the
interfaces �i . This is the reason we employ the “soft” interface coupling as opposed to the
L2(�i )-norm of w(i+1,i) which would enforce continuity across �i . The boundary integral
component of the total energy is a part of the H 1/2(�i )/R-norm. The form used in (4.2)
does not include a negative power of |x − y| as required by this fractional norm. Removal
of the denominator allows large derivatives of w(i+1,i) to be present. At the same time,
this term seems to be strong enough to keep both u(i)

h , u(i+1)
h on order of h close to each

other in L2(�i )-norm. The constraint (4.2b) controls the number of discontinuities in ∂yu
across these interfaces. Hence the competition among the excess strain energy, the possible
number of jumps in ∂yu, and the soft coupling condition promote branching of the already
established laminates across the interfaces �i . The properties of the integral coupling term
are demonstrated at Fig. 4 on a simple example.

This approach provides minimizers leading to lower energy levels corresponding to the
second “multidimensional” scaling regime explained in the previous section. Another major
benefit of the proposed approach is the computational cost. The method works well on coarse
meshes—cf. Section 5—and it can be certainly implemented on parallel computers.

4.1. Domain Decomposition based on Equipartitioning of the Total Energy

In order to build a decomposition of �, i.e., to find the positions Li of interfaces �i ,
we face computationally almost impossible task of verifying the inequality (3.13) to find
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the dimension of the newly created space V (i)
h . We use the equipartitioning of energy

(Theorem 5 [15]) to get around this problem. The total energy is equipartitioned at equi-
librium between energy of the elastic strain α∂x u and the surface energy (measured by the
total variation ε‖∂yyu‖); cf. Fig. 5. Namely, if u were a minimizer of the total energy (1.2)
then

ε‖∂yyu(x, .)‖(0, K )−
∫ K

0
α |∂x u(x, y)|2 dy = κ(α, β, ε, �, u),

for almost all x ∈ (0, L). (4.3)

It is possible to show [15] that the constant κ(α, β, ε, �, u) in (4.3) can be estimated, up to
a multiplicative constant, by ε2/3L−2/3. We cannot expect that (4.3) would be literally true
in the finite dimensional setting. Rather, we assume that the equipartitioning holds true in
an average sense with respect to the scale (Li − Li+1). Consequently, in view of (4.3), we
construct the points {Li }M+1

i=1 by requiring

∫ Li

Li+1

ε
∥∥∂yyu(i)(x, .)

∥∥ (0, K ) dx −
∫ Li

Li+1

∫ K

0
α
∣∣∂x u(i)(x, y)

∣∣2 dx dy

= C
( ε

L

)2/3
(Li − Li+1) (4.4)

for some positive constant C . We can simplify the search for the partitioning {Li }M+1
i=1 since

we control the upper bound for the first integral in (4.4) by dim V (i)
h .

We determine the partitioning {Li }M+1
i=1 sequentially. Given � and M > 1 we first compute

the initial iterate u(1) by solving the minimization problem

J
(
u(1), �

) = inf
u∈W 1,4(�)

u=0 on ∂�\{x=L}
∇un=0 on {x=L}

J(u, �),

(4.5)

subject to
∫ L

0
ε
∥∥∂yyu(1)(x, .)

∥∥ (0, K ) dx ≤ ε2/3L1/3 K .
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Next, we set �1 = �, L1 = L , and we find the largest point L2, 0 < L2 < L1, such that

∫ L1

L2

∫ K

0
α
∣∣∂x u(i)

h (x, y)
∣∣2 dx dy ∼ C

(
ε2/3(L1 − L2)

1/3 −
(

ε

L

)2/3

(L1 − L2)

)
. (4.6)

We continue by finding now two functions u(1), u(2) optimizing, in finite dimension and
with L3 = 0,

min
u(i)∈V (i)

h
i=1,2

2∑
i=1

J
(
u(i)

h , �i
)+ γ

∫
�1

∫
�1

∣∣w(2,1)
h (x) − w

(2,1)
h (y)

∣∣2 dx dy,

(4.7)

where w(2,1) = u(2) − u(1), γ > 0, dim V (i)
h ≤ ε−1/3(Li − Li+1)

−2/3 , i = 1, 2.

We also require the following boundary conditions to be satisfied by the functions u(i)
h in

the optimization (4.7)

u(2)
h (x, y) = 0, on ∂�2\{{x = L2} ∪ {x = 0}},

u(1)
h (x, y) = 0, on ∂�1\{{x = L2} ∪ {x = L1}} , (4.8)

∇u(1)
h (x, y)n = 0, on {x = L1}.

Repeating this process, we split the domain �2 = ((L4, L3) ∪ (L3, L2)) × (0, K ), L4 = 0,
so that (4.6) is satisfied with i = 2, and we then proceed to find three functions u(i)

h solving
(4.7) but now with i = 1, 2, 3. We obtain a decomposition of domain � and we create a
sequence of functions approaching the solution of Problem 4.1.

4.2. Computation of Descent Direction

We determine the solution to the minimization problem (4.2) by the Descent Algorithm.
Let us denote

E
(
u(1), . . . ,u(M); �1, . . . ,�M

)
def=

M∑
i=1

J
(
u(i), �i

)+ γ

M−1∑
i=1

∫
�i

∫
�i

∣∣w(i+1,i)(x) − w(i+1,i)(y)
∣∣2 dx dy,

where w(i+1,i) = u(i+1) − u(i), γ > 0.

(4.9)

Let g = (g(1), . . . , g(M)) be the metric gradient of E with respect to the W 1,4(�)-topology.
Letting u = (u(1), . . . , u(M)) with i th component corresponding to �i , the update for the
(n + 1)-iterate of Steepest Descent is given by

u(i)
n+1 = u(i)

n − αng(i)
n , αn ∈ R

+. (4.10)

The step length αn is result of the line minimization

αn = Arcmin
α∈R+

E(u − αg; �1, . . . , �M). (4.11)
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In order to determine the descent direction g in the minimization problem (4.7) we pro-
ceed using the non-conforming domain decomposition method. We refer to [21] for its
description. Denoting

dE
(
u; �1, . . . , �M , ϕ(i)

) def= d

dt
E
(
u(1), . . . , u(i) + tϕ(i), . . . , u(M), �1, . . . , � j

)∣∣
t=0,

the weak gradient G(u(i))|�i ∈ W −1,4/3(�i ) be given by the variational relation

〈
G
(
u(i)
)
, ϕ(i)

〉
W −1,4/3(�i ),W

1,4
0 (�i )

= dE
(
u; �1, . . . , �M , ϕ(i)

)
for all ϕ(i) ∈ W 1,4

0 (�i\�i ).

(4.12)

Now, we find g(u(i))|�i ∈ W 1,4/3
0 (�i ) by solving in the sense of distributions the following

problem:

g
(
u(i)
) = −�−1 G

(
u(i)
)
, in �i ,

∇g
(
u(i)
)
n = ∇g

(
u(i−1)

)
n, for almost all s ∈ �i ,

(4.13)∫
�i

(
g
(
u(i)
)
(s) − g

(
u(i−1)

)
(s)
)
µ(s) d S = 0, for all µ ∈ H 1−14/24,24/14(�i ),

g
(
u(i)
) = 0 on ∂�.

Denoting the unknown values ∇g(u(i))n|�i by λ(i), i.e.,

λ(i)(s)
def= ∇g

(
u(i)
)
n|�i (s), for almost all s ∈ �i , (4.14)

the variational form of (4.13) reads: Find g(u(i)) ∈ W 1,4/3
0 (�i\�i ), and λ(i) ∈ H 1/2(�i )

such that

M∑
i=1

∫
�i

∇g
(
u(i)
)
(x)∇ϕ(i)(x) −

M−1∑
i=1

∫
�i

λ(i)(s)
(
ϕ(i)(s) − ϕ(i−1)(s)

)
d S

= dE
(
u, �1, . . . , �M , ϕ(i)

)
, for all ϕ(i) ∈ W 1,4

0 (�i\�i ), i = 1, 2, . . . , M, and

(4.15)∫
�i−1

(
g
(
u(i)
)
(s) − g

(
u(i−1)

)
(s)
)
µ(s) d S = 0,

for all µ ∈ H 1−14/24,24/14(�i−1), i = 2, . . . , M.

Finally we project the descent direction into the space W 1,4(�) by taking

{
∇g
(
u(i)
)
(x)
∥∥∇g

(
u(i)
)
(x)
∥∥−2/3

}M

i=1
(4.16)

as the gradient of the new steepest (w. r. t. W 1,4-topology) descent direction g.
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4.3. Saddle Point Problem

The finite element discretization of the Saddle Point Problem (4.15) leads to the linear
system

(
A BT

B 0

)(
gh

λh

)(
f
0

)
(4.17)

where A is sparse, banded, block-diagonal, symmetric positive definite matrix given by

A =




A1 . . . . . . 0
0 A2 . . . 0

. . . . . . . . . . . .

0 . . . . . . AM


 .

Each block diagonal matrix Ai corresponds to the stiffness matrix given by the discretization
of the Laplace operator in the subdomain �i . The matrix B is also a block matrix. It has the
form

B = (B1 . . . . . . BM).

The square matrix Bi and (in general) the rectangular matrix Bi−1 correspond to the dis-
cretization of the boundary integrals

∫
�i−1

(
ϕ

(i)
l (s) − φ

(i−1)
k (s)

)
ϕ

(i)
j d S = (Bi )l, j − (Bi−1)k, j .

The test functions ϕ(i) are traces of the test functions used in the finite element space
associated with the domain �i while φ(i−1) are traces of the test functions acting in the
domain �i−1.

We want to allow the increase of the number of discontinuities in ∂yu(i)
h across the

interfaces �i . In view of the update (4.10) this means that the gradient descent directions
g(i)

h must be discontinuous across these interfaces. This can only happen if

Bi g
(i)
h

∣∣
�i

− Bi−1g(i−1)
h

∣∣
�i

= 0 (4.18)

can be solved by two different vectors g( j)
h |� j , j = i, i − 1. Since N (Bi ) = {0}, we must

have two different matrices associated with each interface �i . We use the same polynomial
space in every subdomain �i ; thus we achieve this by using misaligned meshes; cf. Fig. 6.
The origin of the new oscillations at the interfaces �i is visible in Figs. 7 and 8.

Remark 4.4. The nonconforming domain decomposition itself will not promote forma-
tion of multidimensional structures. Approximating the optimization problem (4.2) with

dim V (i)
h = dim V (i+1)

h , for i = 1, 2, . . . , M − 1

and with meshes exactly aligned across the interfaces is equivalent in the Finite Element
setting to finding a single function uh ∈ Vh ⊂ C0(�) minimizing the stored energy. The
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FIG. 6. Misaligned mesh used in the decomposition of �.

calculations performed in [13] show that the appearance of finer structures is due to larger-
scale nonconformity which is promoted by the appearance of different matrices in (4.18).
By how much the functions u(i)

h can differ across the interfaces �i is controlled by the “soft”
coupling boundary term in (4.2).

Remark 4.5. The implications of the mesoscale non-conforming approach are addressed
in [13] in comparison with the conforming approximation of the self-similar minimizers.

5. NUMERICAL RESULTS

This section presents computational results obtained by the method introduced in the
paper. We discuss the scaling properties corresponding to the minimizers obtained by this
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FIG. 7. Plots of minimizer u obtained from actual numerical calculations. We look at two functions at the
interface �1 located at x = 1/2. Left: This plot shows the profiles of functions u(i)(1/2, y), i = 1, 2, for y ∈ [0, 4].
The dashed line corresponds to the function u(2) which belongs to the subdomain closer to x = 0. The solid line
represents u(1)|�1 . We recall that the difference u(1) − u(2)|�1 is continuous in the sense (4.15b). Right: This figure
shows the same functions along x = 1/2 but from a three dimensional perspective. The function with finer mesh
corresponds to the dashed line on the left plot.
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FIG. 8. The density plots of the deformation gradient for the calculations in “short” domains. The picture
on the left corresponds to the calculations based on the methods introduced in the paper. The remaining picture
corresponds to the standard globally continuous Q1 Finite Element approximation.

method and we compare their scaling properties with the scaling properties of the minimizers
based on the standard globally continuous Q1 Finite Element approximation and on the
functional (4.1), which does not contain contribution of the singular perturbation term.

We visualize the discrete minimizers using density plots based on the function

q(x, y) = ‖∇u(x, y) − F1‖
‖∇u(x, y) − F1‖ + ‖∇u − F2‖ ∈ [0, 1] (5.1)

where F1 = (0, 1)T and F2 = (0, −1)T ; F1 and F2 are the sought after gradients. The
function q(x, y) has values ranging from 0 to 1. If ∇u(x, y) is close to F1 then q(x, y)

has value close to 0. Whereas, q(x, y) is close to 1 if ∇u(x, y) is close to F2. The colors
prescribed to these values are black for 0 and white for 1.

All the results discussed in this section correspond to minimization of the problem (4.2).
We takeα = 1

2 ,β = 1
4 , and we setγ = 1

2 , ε = 0.04. The decomposition of the computational
domain we find is given by

(0, L) × (0, 4) =
3⋃

i=1

(
L

2i
,

L

2i−1

)
× (0, 4) ∪ (0, 2) × (0, 4) . (5.2)

We choose the number of partitions in the x/y-directions to be 10/15, 20/30, 40/60, and
80/120 for i = 1, 2, 3, 4, respectively.The ratio of the dimensions of the Finite Element
spaces corresponding to the domains with the common boundary is 0.25 in this case. The
dimensions of the Finite Element spaces V (i)

h are 150, 600, 2400, and 9600, respectively.
Thus the number of laminates near {x = 0} can be, theoretically, 120 at the most. Using
the local lower bound for the total number of discontinuities in the y-derivative of the
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TABLE I

Equipartitioning of Energy and Number of Discontinuities

x0 ε
∫ x0

0 Nh(x) dx J(uh(0, x0) × (0, 4)) Equipartitioning Nh(x0) [(9/4)1/3ε−1/3x−2/3
0 4]

1/16 0.11 0.18 −0.074 43 48
1/8 0.21 0.23 −0.028 39 30
1/4 0.38 0.32 0.052 35 19
1/2 0.65 0.48 0.155 27 12
1 1.03 0.76 0.240 19 7
2 1.47 1.19 0.221 11 5
3 1.75 1.48 0.182 7 4
4 1.87 1.65 0.103 3 4
5 1.91 1.80 −0.036 1 2
6 1.95 1.87 −0.095 1 2
7 1.99 1.87 −0.084 1 2
8 2.03 1.97 −0.173 1 1

Note. Summary of calculations verifying the equidistribution of energy (5.6) based on the value of
the energy at various regions of the computational domain � = (0, 16) × (0, 4). The discrete solution
uh is obtained by the nonconforming domain decomposition method. The “Equipartitioning” column
contains the difference between the left-hand and right-hand sides of (5.6). The last column shows the
predicted lower bound for the number of discontinuities. The lower bound is based on [17, Theorem 2.6].
We denote [.] the floor of a real number.

minimizers, we find that for the data used in our calculations

‖∂yyu(x0, .)‖(0, 4) ≥ 1

2
C

4

ε1/3x2/3
0

∣∣∣∣
C=(9/4)1/3,ε=0.04,x0=1/16

∼ 48. (5.3)

Hence, the resolution in the y-direction in the subdomain �4 = (0, 2) × (0, 4), which is
120 is sufficiently large. The lower estimate (5.3) is based on the equipartitioning of the
total energy and on the estimate of the constant C in (5.3) given by (Lemma 2.8 [17]).
We note that in our calculations described in Section 5.1 the number of discontinuities at
x0 = 1/16 is 43; cf. Table I.

We assume throughout the analysis of the computational results that the constant in (4.3)
is given by

κ(α, β, εh, (0, L) × (0, 4), uh) =
(

2ε

L

) 2
3

∼ 0.03. (5.4)

The results show that the minimizers obtained by the proposed method yield scaling
α1/3ε2/3L1/3 K of the total energy. We note that for the data used in our calculations

√
0.5 × 0.04 × 16 × 4 ∼ 2.26 > 0.93 ∼ 0.51/3 × 0.042/3 × 161/3 × 4.

Hence, we should, as the first indication, observe energy roughly twice or three times smaller
compared to the energy evaluated at the minimizers obtained by the standard globally
continuous Q1 Finite Element approximation. The later approach does not seem to provide
the more complex pattern morphology.
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5.1. Basic Comparison

We start the adaptive computational procedure with domain �1
def= (0, 16) × (0, 4), dis-

cretized by 10 partitions along the x-direction and 15 partitions along the y-direction.
This yields mesh size h1 = 1.600 along the x-axis and the mesh size h2 = 0.2667 along
the y-axis. Subsequently, the domain is partitioned at x = 8. We keep the same mesh
size and let h1 = h(1)

1 = 1.600 and h2 = h(1)
2 = 0.2667 in the subdomain �1 = (8, 16) ×

(0, 4). The new subdomain �2 = (0, 8) × (0, 4) has double the number of original parti-
tions that we started with. This is the step in which we implicitly impose the constraint
(4.2).

The subdomain �2 = (0, 8) × (0, 4) is split at the midpoint along the x-axis, i.e., at
x = 4. We save the mesh size in the existing subdomains �1 and �2 and we double the
number of partitions in the new subdomain �3 = (0, 4) × (0, 4). This yields 40 partitions
along the x-axis and 60 partitions along the y-axis. The mesh size in the new subdomain is
h(2)

1 = 0.1000 along the x-axis and h(2)
2 = 0.0667 along the y-axis.

Then the subdomain �3 = (0, 4) × (0, 4) is split again at the midpoint along the x-
axis; in this case that is x = 2. Repeating the same procedure as before, we arrive at
h(4)

1 = 2/80 = 0.025 and h(4)
2 = 4/120 = 0.033 for the subdomain �4 = (0, 2) × (0, 4).

In order to compare the calculations described above with the standard finite element
method, we solve the same problem without the use of the decomposition and with the
inclusion of the singular perturbation term. We take the regular grid of 640 × 120 points in
the x- and y- directions, respectively, and we discretize the descent direction g corresponding
to the functional (4.1) by Q1-finite elements. We recall that Q1 = Span{1, x, y, xy}. Thus
we have a mesh size h1 = 0.025 along the x-axis and a mesh size h2 = 0.0333 along the
y-axis. This results in a system of 76, 800 linear equations for the descent direction g. The
surface energy penalization is implicitly imposed by the fact that the minimizer cannot
oscillate in the y-direction faster than 1/h1, i.e., ξh(x) ≤ 120, for any x ∈ (0, L). The
resolution is identical in the region (0, 2) × (0, 4) for both calculations but we use only
total of 12, 750 equations for the adaptive computational procedure.

The results from these calculations are plotted in Figs. 9, 10, and 11. Quick inspection of
the first plot in Fig. 10 reveals the triangular domains characteristic for the simpler scaling
regime in (2.2). The energies versus the iteration index n corresponding to the domain
(0, 1/2) × (0, 4) are plotted at Fig. 12.

Remark 5.1. We do not include the “surface energy” term in our conforming calculations
since we would have to use the squared laplacian of u as the representation of the surface
energy. But then we would have to use a different finite element space than Q1. Though
it is possible to relate the two models on the continuum level it is problematic to do so on
the discrete level. We simply assume that the role of the surface energy is played by the
dimension of the approximating space. The discrete minimizer is thus determined by the
competition between the different terms in (4.1) and this dimension based on the initial
guess. Its footprint is always present in the final solution.

5.2. Computation of
∫ x0

0 Nh(x) dx

We describe in this subsection the computation of the term
∫ x0

0 Nh(x) dx for x0 = 1/8.
The values of the integral for other values of x0 are obtained similarly. The integral
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FIG. 9. Basic comparison of the results. The upper density plot corresponds to the minimization of (4.2) in
the domain (0, 16) × (0, 4) discretized by the mesh 640 × 120 points in the x- and y-directions, respectively. The
density plot exhibits characteristic “triangular regions” observed by Lifshitz [18]. The lower density plot visualizes
the result of the minimization of the same problem but computed with the proposed method. This minimizer
corresponds to the more complicated domain structure [20]. The spatial resolution in the region (0, 2) × (0, 4) is
the same for both examples. The white stripes running across the lower density plot correspond to the positions
of the interfaces �i due to the use of the nonconforming domain decomposition.

∫ x0

0 Nh(x) dx is the product of the number of discontinuities in ∂yuh in the y-direction
multiplied by the size of the interval (0, x0). Consequently, we approximate

∫ 1/8

0
Nh(x) dx ∼ 1

16
N

(
1

16

)
+
(

1

8
− 1

16

)
N

(
1

8

)
. (5.5)

FIG. 10. Frontal views corresponding to the minimizers of (4.2) for the first example. The left plot corresponds
to the minimization of (4.2) using the standard Q1 finite element method. Comparison of the two plots reveals
much finer oscillations contained in the minimizer found by the adaptive scaling approach. This is visible close
to the boundary at {x = 0}. Number of oscillations on the right picture is 43 at x = 1/16, which almost exactly
corresponds to the theoretical predictions.
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FIG. 11. Comparison of energies. The plot shows the value of J(uh, (0, 1/2) × (0, 4)) against the Steepest
Descent iteration number. The dashed line correspond to the minimization based on the standard Q1 Finite Element
approximation without any decomposition. The solid line represents the value of the energy for the minimizers
obtained by the method introduced in the paper.

We read from Fig. 12 that

N

(
1

16

)
= 43 and N

(
1

8

)
= 39.

Thus ∫ 1/8

0
Nh(x) dx ∼ 43

16
+ 39

16
= 41

8
≈ 5.12.
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FIG. 12. Left: Plot of the function u(x, y) at the point x0 = 1/16. Right: Plot of the function u(x, y) at the
point x0 = 1/8. The determination of the integral

∫ 1/8

0 Nh(x) dx uses the information provided by these figures.
The integral is split into two integrals

∫ 1/16

0 Nh(x) dx and
∫ 1/16

1/8 Nh(x) dx which are computed separately. The term
Nh(x) corresponds number of discontinuities in ∂yuh along y-direction. In the case of the left figure, we count 43
discontinuities. We multiply this by the length of subinterval [0, 1/16] resulting in the value of 43/16 for the first
integral. The second integral is computed similarly with resulting value of 39/16. Thus

∫ 1/8

0 Nh(x) dx ≈ 41/8.
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5.3. Local Scaling Law

Now we proceed to identify a scaling law obtained by the method introduced in the paper.
Recalling (4.3), it should be true that

εh

∫ x0

0
Nh(x) dx − J(uh, (0, x0) × (0, 4)) ≈ x0

(
2ε

L

) 2
3

, 0 < x0 ≤ L

2
. (5.6)

The requirement x0 ≤ L
2 eliminates the influence of the boundary condition at {x = L}

where the energy is not zero. In other words, we do not assume that (5.6) holds in the “far
field” in our calculations.

Table I summarizes verification of the formula (5.6) evaluated for x0 = 1/16, 1/8, 1/4,
and x0 = 1/2 and at farther points in [1, 8] × [0, 4] as well as it indicates number of dis-
continuities created in the y-derivative of uh . The solution uh used in the table is obtained
using the adaptive nonconforming domain decomposition method and the computational
domain is � = (0, 16) × (0, 4).

The last two columns compare computed and predicted number of discontinuities in the
y-derivative of minimizers. The theory developed in [17, Theorem 2.6] provides a lower
bound but it does not yield an upper bound for N (x). Comparing the last two columns
in Table I it is evident that Nh(x) follows the same pattern as ε−1/3x−2/3

0 K . Hence the
computational evidence confirms the conjecture made in [17] that there exists a constant C
such that for the minimizers of (1.2) the following upper bound holds

‖∂yyu(x0, .)‖(0, K ) dy ≤ Cε−1/3x−2/3
0 K . (5.7)

Complex minimizers are expected to yield energy values that scale for x0 � L in the
same way as the surface energy contribution. Namely,4

J(uh, (0, x0) × (0, K )) ∝ ε2/3x1/3
0 K . (5.8)

We summarize computed and predicted values of energy at Table 13 where we compare
the “ 2

3 ” scaling with the “ 1
2 ” scaling law. The values of the energy used in this table are the

same as those used in Table I.

5.4. Global Scaling Law Obtained with the Adaptive Domain Decomposition Method

We now focus on determining the scaling law best approximating the total stored energy
values obtained for the results in domains � = (0, L) × (0, 4), L = 1, 2, 4, 8, 16. Our
objective is to find constants C1 and C2 such that

ε

∫ L/2

0
Nh(x) dx + J(uh, (0, L/2) × (0, 4)) ∼




C1

√
αεh

L
2 , or

C2 α1/3ε
2/3
h

(
L
2

)1/3
,

for L = 1, 2, 4, 8, 16. (5.9)

The surface energy term ε
∫ L/2

0 Nh(x) dx is not present in our calculations explicitly. We
control the interplay between the surface energy and the stored elastic energy by the domain

4 An anonymous referee brought to our attention results in [6] proving the cited hypothesis.
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decomposition which obeys the equipartitioning principle (4.4), and by the dimension of
the approximating space which has the upper bound (3.12) derived from the scaling law of
the surface energy. Hence, we can legitimately expect the scaling behavior (5.9).

First, we compute the values of the scaling laws (5.9) for each of the domains (0, L) ×
(0, 4), L = 1, 2, 4, 8, 16. Then, we solve for the corresponding constants C1 and C2. We
divide the computed energy by the anticipated scaling law, i.e.,

C1,L = ε
∫ L/2

0 Nh(x) dx + J(uh,L , (0, L/2) × (0, 4))√
αεL/2

C2,L = ε
∫ L/2

0 Nh(x) dx + J(uh, (0, L/2) × (0, 4))

α1/3ε2/3(L/2)1/3

(5.10)

These computations are shown in Table II. We identify a scaling law by the Mean deviation
of the constants. We choose the scaling law based on the smallest range of fluctuations of
the “constants” in (5.10). The calculations presented suggest that

∫ L/2

0
εNh(x) dx + J(uh, (0, L/2) × (0, 4))

∼
{

1.1 × √
0.5 × 0.04 × L/2 × 4, if L ≤ 4,

4.2 × 0.51/3 × 0.042/3 × (L/2)1/3 × 4, if L ≥ 4.
(5.11)

This observation is based on the results summarized in Table III. Thus it seems that the “ 1
2 ”

scaling law provides better predictions if L ≤ K and the “ 2
3 ” scaling law is better if L ≥ K .

An interesting observation is to note that for the case [0, 4] × [0, 4], both scaling laws in
(5.11) yield almost identical value of energy. The case L = 4 achieves a sort of optimality
or it is a critical point “of sorts”.

5.5. Local-in-y Scaling Law Conjecture

In this section we analyze the local-in-y scaling law conjecture made in [17]. Namely,
the question is if there exists a constant C , independent of ε, such that∫

Ql

|∂x uh |2 dx dy +
∫ l

0
ε‖∂yyuh(x, .)‖(0, l2/3

)
dx ≤ C ε2/3l, (5.12)

TABLE II

Local Scaling Law

x0 J(uh(0, x0) × (0, 4)) ε2/3x1/3
0 4 ε1/2x1/2

0 4

1/16 0.18 0.18 0.20
1/8 0.23 0.23 0.28
1/4 0.32 0.29 0.4
1/2 0.48 0.37 0.56
1 0.76 0.46 0.80
2 1.19 0.58 1.13

Note. Summary of summarizes calculations verifying the local
scaling properties of the minimizers obtained using the method
introduced in the paper.
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TABLE III

Values of Constants C1
’
L and C2

’
L

L/2 ε
∫ L/2

0 Nh(x) dx + J(uh,L , (0, L/2) × (0, 4)) C1,L C2,L

1/2 0.2 + 0.38 1.02 1.56
1 0.4 + 0.55 1.18 2.03
2 1.25 + 1.2 2.16 4.15
4 1.55 + 1.64 1.99 4.29
8 2.03 + 1.97 1.77 4.27
Variance 0.24 1.82
Median deviation 0.39 0.13

Note. These values are computed as described by (5.10). The first column corresponds
to the domain range along x-axis. The second column is the total stored energy in the
corresponding domain, i.e., in (0, L/2) × (0, 4). The function uh is obtained by the method
introduced in the paper.

where Ql = [0, l] × [a, a + l2/3]. The conjecture is based on the self-similar construction
which provides the upper estimate Cε2/3L1/3 for the energy (1.2). We note that certain
minimizers are indeed asymptotically self-similar [6], which makes this conjecture realistic.
We find that this conjecture, at least for the calculations presented here, is indeed true. The
value of the constant seems to be 2. We present Table IV associated with the calculations
done on � = (0, 16) × (0, 4) using the method introduced in the paper and described in
Section 5.1. We take a = 0 for the purpose of verification of (5.12).

5.6. Analysis of the Minimizers Obtained with the Globally Continuous Q1 Finite
Element Approximation

We now attempt to identify a scaling law associated with the standard approach, that is,

one that does not involve the decomposition of the domain �
def= (0, 16) × (0, 4) and which

TABLE IV

Local-in-y Scaling Law Conjecture

l
∫

Ql
|∂x uh |2 dx dy + ∫ l

0 0.04‖∂yyuh(x, .)‖(0, l2/3) dx 2 × 0.04
2
3 l

1/40 0.003 0.005
3/80 0.005 0.008
1/16 0.010 0.014
1/10 0.018 0.023
1/8 0.023 0.029
1/4 0.059 0.058
3/10 0.063 0.070
1/2 0.117 0.116
3/4 0.225 0.175
4/5 0.239 0.187

Note. This table shows the sum of local and surface energies in region Ql =
[0, l] × [0, l2/3] and the conjectured power law ε2/3l; [17]. The value of the surface
energy coefficient in our calculations is taken to be ε = 0.04. The function uh is
obtained by the method introduced in the paper. The corresponding calculation is
described in Section 5.1.
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TABLE V

εh

∫ x0
0 Nh(x) dx − J(uh, (0, x0) × (0, 4)) = x0(

εh
8
)

2
3

x0

∫ x0
0 Nh(x) dx J(uh, (0, x0) × (0, 4)) εh

1/16 1.56 0.38 0.25
1/8 3.12 0.65 0.21
1/4 5.5 0.90 0.17
1/2 7.75 1.28 0.17
1 12.25 1.82 0.15
2 17.25 2.45 0.15
3 22.25 2.74 0.13
4 23.25 2.81 0.13
5 24.25 2.81 0.13
6 25.25 2.81 0.13
7 25.25 2.81 0.12
8 27.25 2.81 0.12

Note. Summary of calculations of the “surface energy” coefficient εh . This table
contains energy values calculated using the discrete solution obtained by standard
finite element method. We use the regular grid of 640 × 120 points in the x- and y-
directions, and we discretize the descent direction g corresponding to the functional
(4.1) by Q1-finite elements, Q1 = Span{1, x, y, xy}. The mesh size is h1 = 0.025
along the x-axis and h2 = 0.0333 along the y-axis. This results in a system of 76, 800
linear equations for the descent direction g.

is based only on the minimization of the functional defined by (4.1). Since the surface
energy term is not included directly in this computation, we determine the “surface energy”
coefficient using the equidistribution of energy. Hence, we assume that this principle holds
true even without the explicit inclusion of the penalization term. We present in Table V
the values of εh corresponding to each x0 = 1/16, 1/8, 1/4, 1/2, 1, 2, 3, . . . , 8. The val-
ues of the coefficient εh oscillate around 0.15 for x0 ≥ 1/4. Similar calculations done for
L = 1 − 8 seem to be more consistent in terms of the value of the “surface energy” coef-
ficient εh . The results are presented in Table VI including the constants Ci,L , L = 1 − 16,
i = 1, 2.

The computation of
∫ x0

0 Nh(x) dx , found in the second column of Table V, is described
in Section 5.2. So we refer the reader to this section for verification as we proceed to
describe and discuss the computation of constants C1,L and C2,L . As before, we compute
the two anticipated scaling laws using (5.9) with εh obtained from the standard Q1 Finite
Element approximations. We then use these scaling laws to compute the constants via
the relationship given by (5.10). Table VI contains the computed values of these constants.
We note that all the scaling laws yield a median deviation far above the ones for the constants
in Table III. However, an inspection of the energy plots in Fig. 13 indicates that the standard
Q1 Finite Element approximation yields lower values of energy for the “short” domains,
L ≤ 4. This observation is corroborated by the fact that the values of the “surface energy”
coefficient εh obtained from the standard Q1 Finite Element calculations are smaller for
L = 1, 2 than 0.04, which is the value of the surface energy coefficient we use implicitly
in the method introduced in the paper. We conclude that the standard Q1 Finite Element
method approximates the first scaling regime,

√
αεL , for L ≤ 4, better than the method we

introduce.
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TABLE VI

Values of Constants C1
’
L and C2

’
L

L/2 εh,L J(uh,L , (0, L/2) × (0, 4)) C1,L C2,L

1/2 0.02 0.11 1.56 2.37
1 0.03 0.44 3.59 5.74
2 0.03 0.72 4.16 7.46
4 0.06 1.51 4.36 7.82
8 0.15 2.81 3.63 4.68
Variance 1.24 4.68
Median deviation 0.53 1.19

Note. The first column corresponds to the domain range along the x-axis.
The third column is the total stored energy in the corresponding domain.
The table corresponds to the standard Q1 Finite Element approximations.
Since the median deviation of the values in the C1,L column is twice smaller
compared to the same quantity for the C2,L column, we conclude that the
these calculations approximate the “ 1

2
”-power law.

5.7. Branching of the Needle Twin Structures

One of the characteristic properties of the minimizers corresponding to lower values of the
energy is that their derivatives, or gradients, oscillate with higher and higher frequency closer
to the internal crystal surfaces. This corresponds to splitting the already stable structures.
We observe this phenomenon by visually comparing the density plots for four calculations
with K = 1, 2, 4, and 16 in the domain (0, 16) × (0, K ). Comparing the results we notice
that while there is only one generation of splitting of the twin lamella for K = 1, there
are four generations of splitting visible for K = 16. We also point out that our minimizers
look somewhat different from what is suggested in Section 1 and the theory developed in
[15–17]. The twin structure is not subdivided into just one or two smaller twins but away
from the boundary {x = 0} it splits many times.

FIG. 13. The plots of the energy J(uh, (0, 1/8) × (0, 4)). The plot on the left corresponds to the domain
� = (0, 1) × (0, 4); the plot on the right is based on the calculations in � = (0, 2) × (0, 4). The two plots confirm
the observation that the standard Q1 Finite Element approximation adheres to the coarser “ 1

2
”-scaling law which

is preferable for “short” domains. In these cases it outperforms the method introduced in the paper. On the other
hand the Q1 Finite Element approximation does not provide any conclusive scaling behavior for “long” domains
when a multiscale behavior of the pattern morphology is to be expected. The dashed line corresponds to the energy
computed using the method introduced in the paper.
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TABLE VII

Measured and Predicted Twin Widths

x0 Measured width Prediction 0.041/3x2/3
0

1/16 0.16-0.2 0.13
1/8 0.16-0.2 0.17
1/4 0.16-0.2 0.21
1/2 0.25-0.4 0.27
1 0.25-0.66 0.34
2 0.25-1.5 0.43
3 0.25-1.75 0.49
4 2 0.54

Note. We assume that the twin width is proportional to ε1/3x2/3
0

where x0 is the distance to the internal surface at x = 0. The
measurements correspond to the function uh obtained by the
method introduced in the paper, and to calculations described in
Section 5.1.

The width of the twins changes due to the splitting. The scaling law (3.11) and the
equidistribution principle (4.3) imply that

averaged twin width at distance x0 from {x = 0} ∝ ε1/3x2/3
0 . (5.13)

Table VII summarizes the width scaling observed in our calculations.

REFERENCES

1. G. Alberti and S. Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl.
Math. LIV (2001), 697–715.

2. J. M. Ball and R. D. James, Proposed experimental tests of a theory of fine microstructure and the two wells
problem, Phil. Trans. Rogal Soc. London 338A (1991), 389–450.

3. F. S. Bates and G. H. Fredrickson, Block copolymers: Designer soft materials, Phys. Today 52-2 (February
1999), 32–38.

4. R. Choksi, Scaling laws in microphase separation of dibloc copolymers, J. Nonlin. Sci. 11 (2001), 223–236.

5. R. Choksi and R. Kohn, Bounds on the micromagnetic energy of a uniaxial ferromagnet, Comm. Pure. Appl.
Math. LI (1998), 259–289.

6. S. Conti, Branched microstructures: scaling and asymptotic self-similarity, preprint: Max-Planck Institute
(1999), no. 73, to appear in Comm. in Pure and Appl. Math.

7. S. Conti, I. Fonseca, and G. Leoni, A γ -convergence result for the two-gradient theory of phase transitions,
Comm. in Pure and Appl. Math. LV (2002), 857–936.

8. B. Dacorogna and P. Marcellini, Implicit Partial Differential Equations (Birkhäuser, 2000).
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